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In 1964, Yeh & Cummins demonstrated that coherent light sources could be used 
for the measurement of steady fluid velocities by observing the Doppler shift in 
the frequency of light scattered from small particles moving with the fluid. Since 
1964 many investigators have attempted to extend this technique to the measure- 
ment of turbulent velocity fluctuations. 

A fundamental limitation on this type of velocimeter is the Doppler ambiguity 
introduced by the finite transit time of particles through the scattering volume, 
turbulent velocity fluctuations across the scattering volume, mean velocity 
gradients and electronic noise. A unified account of the effect of the Doppler 
ambiguity on the measurement of the instantaneous velocities is presented and 
results are interpreted using the power spectrum. The influence of the ambiguity 
on the measurement of other statistical quantitiee is also examined. 

Limitations on the spatial and temporal resolution imposed by the finite 
sampling volume are examined using the power spectrum and criteria for 
optimization of the response are proposed. 

An operational laser-Doppler velocimeter is described and measurements of 
spectra in both laminar and turbulent flow are presented. The experimental 
results are seen to be in excellent agreement with theoretical predictions. 

Part 1. Theoretical investigation 
1.1. Historical background 1. Introduction 

In  1964, Yeh & Cummins successfully measured velocity profiles in a liquid by 
examining the frequency shift in monochromatic radiation scattered from particles 
in the liquid. The scattered and unscattered radiation was heterodyned on 
a photocell producing an electrical signal at  the difference frequency; the spec- 
trum of this difference frequency was examined by conventional techniques. 
Since 1964, numerous investigators have applied this technique to the measure- 
ment of mean-square fluctuating velocities and instantaneous velocities in the 
unsteady flow of gases and liquids (Foreman, Lewis & Thornton 1966; Pike et al. 
1967; Welch & Tomme 1967; Lumley, George & Kobashi 1969). Recent attempts 
have been made to measure turbulence in the atmosphere and ocean using radar 
and sonar as incident radiation (Wiseman 1969; Little 1969; Lhermitte 1968). 
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1.2. Nature of the problem 

Considerable attention has been given in the literature to the choice of optical 
components, scattering particles and electronic signal processing (Huffaker, 
Fuller & Lawrence 1969; Mayo 1969; Davis 1968; Rolfe et al. 1968). The sources 
of noise have been identified and theory for optimization of the signal-to-noise 
ratio has been developed. In  spite of these advances, the most basic question 
has not been answered; that is, how does the instantaneous Doppler frequency 
relate to the instantaneous flow velocity? 

The fundamental problem in attempting to  relate the Doppler frequency and 
the flow velocity is that even in a steady laminar flow the Doppler frequency is 
not steady. The signal received by the photocell is the sum of the signals pro- 
duced by all the scatterers present in the scattering volume ab bhat instant; the 
individual signals may have the same frequency, but each has a phase dependent 
on its position in the scattering volume at some arbitrarily chosen origin in time 
as well as an intensity dependent on position and particle size. 

Additional problems in interpretation arise from the fact that in unsteady or 
non-uniform flow particles at  different locations in the sampling volume may be 
moving at different velocities. The velocimeter sees a spatial average of these 
velocities; the result is a loss in spatial resolutionand theintroduction of additional 
random phase fluctuations. 

1.3. The scope of this investigation 

Part I of this paper will first examine the spatial and temporal resolution of the 
laser-Doppler velocimeter and criteria for meaningful measurements will be 
established. Second, the effect of the random phase fluctuations introduced by 
the Doppler ambiguity on attempts to measure statistical quantities in turbulent 
flow will be examined. In  part 2 an operational laser-Doppler velocimeter will be 
described and measurements in both laminar and turbulent flow will be presented. 

2. A description of the velocimeter 
2.1. The photoelectric current 

The typical laser-Doppler velocimeter employs a scattering beam which is 
focused at  some region in the flow, part of whose light is scattered from neutrally 
buoyant particles suspended in the flow. This scattered radiation is collected by 
a photocell and mixed with a reference beam. 

The current produced by tihe photocell is given by the integral over the 
photosensitive surface of the intensity of the light striking it; hence 

i tot  = M s s ,  ~E,(x”,y~,z)+~:Esk.(X”,y~,2)~2dx”dX, (2.1.1) 
k 

where 34 is the photoelectric constant of the photocell, S is the photosensitive 
area, E, is the complex amplitude of the reference beam at the photocell and 
E,, is the complex amplitude of the light scattered from the kth particle, where 
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beam beam 

FIGURE 1. Scattering co-ordinates. Origin of all co-ordinate systems is chosen 
at centre of scattering volume (z is normal to plane of paper). 

the co-ordinates are defined by figure I, and where the summation is over all 
the scattering particles. Expanding (Z.i.l), we have 

i to t = qjs (E,E,* + E, z Es*, + E,* ESk + z E ,  E;) dx” dx, (2.1.2) 
k k kl 

where * denotes the complex conjugate. 
The first term of the integral may be identified as the self-beating of the 

reference beam. The spectrum of these laser amplitude fluctuations is centred 
at  zero frequency and at  frequencies corresponding to the mode spacing of the 
laser. If these bands do not overlap the Doppler shift spectrum, this term may be 
removed by filtering (cf. Edwards et al. 1971). 

The last term contributes to the total current in three frequency bands: in 
the frequency range from zero t o  a value representative of the maximum velocity 
diflerences in the volume, in a similar symmetric interval around twice the mean 
Doppler frequency, and finally in a band around the mean Doppler frequency 
owing to the heterodyning of the forward-scattered reference beam (assuming 
this passes through the flow) and the Doppler-shifted light from the scattering 
beam. Because of phase cancellation resulting from the fact that the scattering 
volume is many light wavelengths across, only the i = j (diagonal) terms of Che 
double summation will contribute to Che current. If the scattering particles are 
modelled as spherical radiators, the primary effect of this term may be shown to 
be to restore the scattered part of the reference beam; hence, the double summa- 
tion term may be ignored. 

21-2 
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For convenience, we shall define 

(2.1.3) 

as the complex current. Changing the order of summation and integration in 
(2.1.3) we have 

i = M C//sETE,ds“dz. (2.1.4) 

Thus the net current i is simply the sum of the currents generated by each 
individual scattering particle; we may write the current for a typical particle as 
i,, where 

is, = M s s ,  E?(X”, y;, 2 )  Esp(XN, y;, 2 )  d X ”  dz. (2.1.5) 

If thescattering particles are small comparedwith thewavelengthh, of thelight, 

k 

they may be modelled as spherical radiators (van de Hulst 1957). We write 
Iy 

(2.1.6) 

where j = 4 - 1 and we have taken 

R = ( x ” , ~ : , x )  

~R-X;/’ = (x” -x;)’ + (92 - y;)’+ (z”-z;)’, and 

where x, denotes the scattering-particle co-ordinates and C, is the scattering 
doefficient chosen in the manner of Mayo (1970). Substituting (2.1.6) into (2.1.5) 

The term in curly brackets has been identified by Mayo (1970) as the inverse 
propagation convolution of EV(xN, ylf, z )  and therefore specifies the form of the 
reference beam at the position of the particle, that is E , ( x ~ ,  y;, zp) .  Thus 

& = MC,Ei(& y;, 2,) m x ; ,  y;, zp), (2.1.8) 

where it should be noted that Ei and E, are expressed in different co-ordinate 
systems. Mayo (1970) has shown that, by defining an equivalent reference beam, 
an equation for i, of the form of (2.1.8) may be obtained even when there are 
spatial filters between the scattering volume and the photocell. It should be 
noted that those results were obtained by ignoring the obliquity factor of scalar 
diffraction theory (cf. Goodman 1968) and the difference between the wavelengths 
of the incident and scattered light. The first assumption is valid for small 
aperture and the second for particle velocities well below that of light (cf. Lading 
1970). 

Usually Ei(x’, y r ,  z )  and E,(x”, y”, z )  are determined by focusing Gaussian cross- 
section beams to their diffraction-limited spot sizes at the desired flow locations; 

ET(xn, yr’, z )  = Eo,exp { - (xn2  + ~ ~ ) / 2 ~ ~ } e x p  {j(27ryr’/h)}, hence, } (2.1.9) 
Ei(x‘, y’,z) = E,, exp( - ( x f 2  + z2)/202) exp {j(27ryr/h)}, 
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Z 

FIGURE 2.  Scattering volume for 0 = 45". 

where Eo, and EOi are the amplitudes at the centre of focus and where cr is given by 

(2.1.10) 

fo is the focal length of the lens and d is the distance between the l/e2 intensity 
points of the beam at the lens. For convenience we have chosen the focal 
lengths of the two lenses to be equal to facilitate interpretation of results. Also, 
the depth of focus has been ignored since for all reasonable values of the parameters 
it is larger than the effective beam cross-section defined by (2.1.11) ; hence, the 
beam cross-sections are considered constant along the direction of propagation 
near the focal point. 

Substitution of (2.1.9) into (2.1.8) and transformation to the velocimeter co- 
ordinate system x (see figure 1) yields 

(2.1.1 I )  

where xp = (xp, y p ,  z p )  represents the co-ordinates of the scattering particle in 
the velocimeter co-ordinate system and where we have defined 

i, = 41 exp { - [xi cos2 40 + y$ sin2 40 + z$]/a2> exp(j4mh-l~~ sin go}, 

I = 2MCp E,, EOi. (2.1.12) 

(Note that we have not restricted the direction of the mean flow to correspond 
to the x direction.) Clearly 

v1 = 4 / 2 6  cos p, g2 = + ? * s i n  he, C T ~  = a129 (2.1.13) 

represent characteristic dimensions of the scattering volume (see figure 2) and 

K = (4m/h) sin (2.1.14) 

represents a scattering wavenumber for the velocimeter configuration. 
We may now write the real current from a single scattering particle as 

i, = Iexp - - +-+- COSKX,  (& z; $) (2.1.15) 
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where we have dropped the subscript p .  Note that I is the amplitude of the 
current produced by the particle when at  the centre of the scattering volume. 

2.2. The signal from moving particles 

If we define a = (a, b,  c) t o  be the initial position of the scattering particle which 
at time t is at x = ( x ,  y, z ) ,  we may write 

(2.2.1) 

where U ( a ,  t )  = [U(a, t ) ,  V (a ,  t ) ,  W ( a ,  t ) ]  is the particle velocity. 
It is clear from (2.1.15) that the instantaneous phase of the signal from a single 

scatterer is given by K x .  Using (2.2.1) we may separate this phase into a fixed 
phase y and a time-dependent phase Q(t),  where 

and 

y = K a  

Q(t)  = K U(a,t,)dt,. s: 
(2.2.2) 

(2.2.3) 

The rate of change of phase dQ/dt is easily seen to be proportional to the particle 
velocity, i.e. 

U(a, t,) dt, = KU(a ,  t ) .  
dC2 

(2.2.4) 

If the scattering particle is assumed to move with the local fluid velocity, then 
U(a, t )  is the Lagrangian fluid velocity or the material velocity (cf. Serriii 1959), 
which depends only on the initial position a of the fluid particle and the time t .  

It is clear from (2.1.5), (2.2.1) and (2.2.4) that if no more than one particle at 
a time is in the scattering volume, one need only count the zero crossings of the 
signal to obtain the velocity. If this procedure is repeated many times, the 
probability density of particle velocities may be obtained; the measurements are 
contaminated only by the resolution of the counting techniques used. All real 
time information is, of course, lost since the particles arrive randomly. 

In the remainder of this paper we shall restrict ourselves to situations where the 
expected number of scattering particles in the scattering volume is greater than one. 
Since, with this restriction, the velocimeter output consists of contributions from 
many particles, identification of the rate of change of phase of the Doppler 
current with the Eulerian velocity at the scattering volume will not be without 
ambiguities. 

We shall define an effective velocity ‘seen’ by the velocimeter as the in- 
stantaneous velocity averaged over all scattering particles contributing to the 
Doppler signal, i.e. 

u,(t) = ‘I// u ( a ,  t )  g(a) “(a,  t ) ~  da, (2.2.5) 
P all space 
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where g(a) is a random weighting function which accounts for the presence or 
absence of the scattering particles as well as their size, where W(X) is a deter- 
ministic function with random argument which accounts for spatial variations 
in the Doppler current and, in effect, defines the scattering volume, and where p 
is the expected number of scattering particles per unit volume. For the situation 
described above w(x) is given by 

(2.2.6) 

For a monodisperse collection of point-scattering particles, g(a) is the familiar 
Dirac delta function d(a) at each particle location. The statistics of g are de- 
veloped in the appendix. For a finite scattering volume with w ( ~ )  = constant 
over the region of definition and zero elsewhere, (2.2.5) is mathematically 
equivalent to 

(2.2.7) 

where Ni is the instantaneous number of scattering particles in the scattering 
volume. We shall see later that the V and W velocity components may be 
accounted for separately and that uo(t) corresponds to the Eulerian velocity, 
which we intuitively feel should be measured by a spatially fixed instrument. 

We now may define, using (2.2.5), an effective displacement X ( t )  by 

(2.2.8) 

Using (2.2.1) and (2.2.8) we may write the x co-ordinate of a particle as 

x( t )  = a + X ( t )  + A(a, t ) ,  (2.2.9) 

where (2.2.10) 

Clearly, A(a, t )  is a Lagrangian property and represents the deviation of the 
particle displacement from the average displacement over the field. 

By combining (2.2.9) and (2.1.15) we may obtain an expression for the current 
produced by a single particle with the Eulerian information occurring explicitly. 

2.3. The total Doppler signal 

From (2.1.4), (2.1.15) and (2.2.9) we may write the total Doppler current as 

cosK[a,+X+A,l, (2.3.1) 
m 

where (x,, ym, 2,) and (am, b,, cnL) represent respectively the position and initial 
position of the mth particle and where, as before, the summation is over all 
scattering particles. 

Since the scattering volume is actually unbounded, the number of scattering 
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particles is infinite and (2.3.1) is inconvenient. We may write the total Doppler 
current in a more convenient form as 

(2.3.2) 

where i(t,a) is the current generated by a single particle and where, as before, 
g(a) is its strength at each initial position. We note that both i(t, a) and g(a) are 
random functions: i( t ,  a) because of its dependence on the random displacement 
field of the turbulence and g(a) because of its dependence on the (random) 
presenceor absenceof a particle. The representation (2.3.2) is an extension of that 
used by Rice (1954) for shot noise (cf. Lumley 1970, p. 80). 

Since the particles are randomly located in the flow, g(a) is statistically in- 
dependent for different values of a. Hence, i ( t )  is the sum of a large number of 
statistically independent random variables whose absolute third moments may 
be chosen to be bounded; we have by the central limit theorem (cf. Lumley 
1970, p. 30) that the characteristic funckional of i ( t )  is Gaussian in the limit 
of many particles. In  fact, iti can be shown that the approach of the characteristic 
functional to Gaussian is inversely proportional to the square root of the effective 
number of scattering particles defined by pcr, (r2 (T~, where ,u is the expected number 
of particles per unit volume. 

By defining 

cosK[u+A(a,t)]g(a)da (2.3.3) 
all space 

sinK[a+A(a,t)]g(a)da (2.3.4) s and G(t)  = - 
all space 

we can write (2.3.2.) as 
i ( t )  = P(t)  cos K X  + G(t)  sin KX. (2.3.5) 

From the definitions and by reasoning of the same kind as was applied to i( t) ,  
it is straightforward to show that P and G are also Gaussian random variables. 

Using a well-known trigonometric identity, we have 

where 
i ( t )  = (F2 + G2)h cos (KX - $1, 

$ = tan-1 (G/.F). 

(2.3.6) 

(2.3.7) 

A typical detector removes the amplitude information by amplifying and 
clipping and keeps only information on the zero crossings, giving a signal 
proportional to frequency, say wl ,  where 

ax a$ w1 = K--- 
at at ’ (2.3.8) 

or W ,  = Ku,(t) - d. (2.3.9) 

We have thus obtained not only the Eulerian-like velocity which we sought, 
but also a term representing the random phase fluctuations introduced by the 
particle motion. It remains to be shown that u,(t) and 4 are statistically in- 
dependent or at least uncorrelated. Before proceeding to an examination of the 
statistics of wl ,  we shall first analyse u,(t) -particularly i6s dependence on the 
u component of the Eulerian velocity field u(x,  y ,  x ,  t ) .  
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3. Spatial and temporal resolution 

The mean-square fluctuation of u,(t) is given by 

3.1. The spectrum ofu,( t )  

- 
where u,(t) is the expected value of uo(t). From (2.2.5) it follows that 

u,(t) = - 

(3.1.1) 

(3.1.2 a) 

= ‘J P all space all space 
U(x, t )  g(x) w(x) ax = s U(X,)w(x)dx ( 3 . 1 . 2 b , c )  

if the fluid is assumed incompressible (cf. Lumley 1961). It is clear from (3.1.2c), 
that, if the mean velocity profile has appreciable curvature across the scattering 
volume, u, will not correspond to the velocity at  the centre of the volume. This 
has been previously pointed out by Edwards et al. (1971) for laminar flows and is 
certainly of primary importance in many capillary flows. 

If the mean velocity profile is constant (or linear) across the scattering volume, 
we have 

u,(t) = u(x,t) w(x)dx 
- -I 

= u(x,t). (3.1.3) 

Thus the mean value of u,(t) is identical to the average Eulerian velocity at the 
centre of the scattering volume under the above restrictions. 

We compute the mean-square effective velocity in a similar fashion: 
- 
u;2  = (a, - Eo)2 

Using (see appendix) 

g(x)g(x’) = p2+p&(x-x’) (3.1.5) 

and 
we have 

R,,(x, x’) = [u(x, t )  - u i ) ]  [u(x’, t )  -%(?-)I (3.1.6) 

~ 6 ’  = R,,(x,x‘) (3.1.7) - s  
For homogeneous turbulence u’i is independent of x and 

(3.1.8) 
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where V can be taken as the effective volume. But pV is the average number 
of scattering particles in the effective volume, say N,, and we can write 

1 -  - 
= @ , , , ( k ) W ( k ) d k + - ( ~ ' ~ + , ~ ~ ) ,  - s  N, 

(3.1.9) 

where Ql1(k) is the u-velocity spectrum and W ( k )  is defined by 

W(k) = &(k) &,*(k), (3.1.10) 

where d ( k )  is the Fourier transform of w(x). We may rewrite this as 

1 @ = cD,,(k) { W ( k )  + &] dk + - u2. 
Nv 

(3.1.1 1) 

I n  the usual case, to which we restrict ourselves, N, B I and the half-power points 
of W(k) are a t  high wavenumbers relative to the turbulence; thus we shall 
neglect all but the first term. The neglected terms can be shown to arise from 
averaging through periods in which there is no signal. (It should be noted that 
the last term will result in a contribution a t  zero frequency in the spectrum and, 
equivalently, a time-independent non-zero correlation. This will be of im- 
portance when (u'2Nv/U2) N O(l).) 

From the definition of w(x) given in (2.2.6) 

(3.1.12) 

where k = (k,, k,, k3) are the wavenumber components of spatial variations in 
the (x, y, z )  directions respectively and where (k,, m,, n,) are wavenumbers 
defined from the scattering volume parameters as 

k, = 1/28v,, m, = 1/2+cz, n, = 1/29c3. (3.1.13) 

It isclearfrom (3.1.4)-(3.1.7)and (3.1.13) thatspatialvariationsinvelocitysmaller 
than the extent of the scattering volume will be attenuated. 

The one-dimensional velocity spectrum of the turbulence is defined by 

where 
v 

Using (3.1.11) we define 

where 

(3.1.14) 

(3.1.15) 

(3.1.17) 

The relation between F,(k,), the measured spectrum, and the true spectrum is, 
of course, of great interest. 

If we restrict ourselves to isotropic turbulence we may write (cf. Batchelor 

(3.1. IS) 1960, p. 49) @ii(ki, kz, k3) = (E(k)/4nk4) Ek2-k?1, 
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where k2 = k2, + ki + kg and E ( k )  is the three-dimensional spectrum function 
(cf. Batchclor 1960). Using (3.1.18) one may show that 

(3.1.19) 

If we define j3 = sin+@ ( 3. I. 20) 

so that m, = j3n* from (2.1.13) and use (3.1.16) and (3.1.18), it is tedious, but 
straightforward, to show that 

x exp { - (k2 - k;) ( 1  +,b'2)/4mi} Io{(k2 - k2,) ( 1  -/32)/4m*2} dk,  (3.1.21) 

where I,, is the zeroth-order modified Bessel function of the second kind. Usually 
j3 = sin if3 is small since the scattering angle is small. 

Pao's form of the spectrum E(k)  is given by 

E ( k )  = a7c-*exp{- $a(kq)%}, (3.1.22) 

rj is the Kolmogorov microscale defined by q = (v3/c)* where E is the rate of dis- 
sipation of turbulent energy per unit mass and v is the kinematic viscosity (Pao 
1965). By substituting (3.1.22) into (3.1.21) and letting c = k,/k we have a form 
suitable for numerical computation: 

Fo(kl) = + exp { - kf/2k2,} ak,* ( 1  - <)2 (8 exp { - $a(k,q/[)*) so' 
x exp { - [k:( 1 - c 2 )  (1 +P2)/4m: c2]} I. [k;( 1 - c2) (1  - P2)/4nz~ [2] de. (3.1.23) 

Non-dimensionalizing by the Kolmogorov variables E and v we have 

(3.1.24) 

Po(kl) has been computed from (3.1.23) and is shown in figure 3 for several 
values of G,* where ,b' = 0.145. The truc speckrum &(f,) is also shown for com- 
parison. It is clear that, when &, becomes of order ti'&, the spectrum shows 
significant attenuation. The degree of attenuation is shown more clearly in 
figure 4, where the velocimeter transfer function defined by Po( kl) /Fi l (kl)  has 
been plotted for several values of %*, with j3 = 0.145, which corresponds to 
40 N 84". Figure 5 plots the wavenumber ab which the spectrum is reduced to 
half its true value (the half-power poinb) as a function of %* for values of 
a = 0,0725, 0.145 and 0.29 or equivalently if3 N 4"'  €44. and 17". The curves are 
seen to be approximately linear on a log-log plot; clearly, the dependence on angle 
is diminishing as the angle becomes smaller. 

I n  order t o  illustrate more clearly the effect of the attenuation at high wawe- 
numbers the true and measured rates of dissipation, say D ,  and D,, were com- 

Dm k21FO(k1) qrn k?Fil(kl)  dkl. ( 3.1.25) 
puted from 

DJD, is shown in figure 6 as a function of G*. It is obvious from the graph that, 

I k,q = L,, m,q = G*, q = ( V 3 / " ) 4  

[ ( E M ) ] 4 F ( k l )  = P(k, ) .  

co 
- =/ 
D, --m -02 
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FIGURE 3. 
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Measured spectra computed from (3.1.23), a = 1.7. 
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FIGURE 4. Velocimeter transfer function. 
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FIGURE 5. Half-power points of velocimeter transfer function. 
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FIGURE 6. Ratio of measured to true turbulent energy dissipation. 

if the dissipation is to be measured to 10 % accuracy, must be nearly unity; 
that is, the largest aimension 01 me scamering volume must De at  least as smau 
as the Komogorov microscale. These results are similar to those obtained by 
Wyngaard (1968) for a hot wire and may easily be extended to the measure- 
ment of cross-stream velocity components. 

The analysis of this section would be incomplete without a discussion of the 
assumptions which were made regarding the character of the turbulence, namely, 
incompressibility, homogeneity, stationarity and isotropy. This situation is, of 
course, dynamically impossible; however, as long as the size of the scattering 
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volume and the passage time of the particles through the scattering volume are 
very much smaller than the length and time scales characteristic of the turbulence 
evolution, and the Reynolds number is large, these assumptions are approxi- 
mately fulfilled and the analysis is valid. 

3.2. Velocity deviations across the scattering volume 

Because of the finite dimensions of the scattering volume, velocity gradients 
will exist across it. The mean-square velocity deviation at  any point in the 
scattering volume is defined by 

W"a, t ) ,  tl -ao(t)12. (3.2.1) 

It is simple to show that the average mean-square velocity deviation is given by 

Under the assumptions of incompressibility, homogeneity, stationarity and 
isotropy it follows immediately from (3.1.4) that 

@ =Jk @,,(k)(l -W(k)}dk. 

From (3.1.14) and (3.1.16) we have 

(3.2.3) 

(3.2.4) 

which may be computed as a function of (k,, m,, n,) as in (3.1.23). 

More physical insight may be gained, however, by relating ( A u ) ~  to the rate 
of dissipation e. By expanding the exponential of (3.2.3) in powers of kl/k,, 
k,lm, and k31n, and assuming that k,, m,, n, B 0 . 2 ~ - ~  (the peak of the dis- 
sipation spectrum) we may neglect terms of order greater than two to obtain 

- 

Assuming isotropy, from Batchelor (1960, p. 45) we may write (3.2.5) as 

Using the definitions of k,, m, and n, we may write 

where 6' is the scattering angle. 
For a scattering angle of 6' N 12 O, sin i6' - 0.1 and 

(3.2.6) 

(3.2.7) 

N 0.015. 
1+2GOS3e v [ 2 cosz ] 
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FIGURE 7. Root-mean-square velocity deviation within the scattering volume. 

Thus for a small scattering angle 

(au)2e (2) 15v [L]. rn2, (3.2.8) 

From (3.2.8) and (3.1.2) we may write 

[ ( A u ) ~ ] ~  = (15)-6 ( ~ e ) $ k , l .  (3.2.9) 

We recognize  YE)^ as the velocity scale associated with the dissipative turbulent 
eddies. Thus, if the turbulence does not change, the root-mean-square deviation 
from the volume-averaged velocity is seen to increase linearly with the largest 
dimension of the scattering volume. This is consistent with what one might have 
expected intuitively. 

Since I%* and n, are almost always much larger than m, and generally chosen 
near v-l, where the spectrum is falling off very rapidly, another approximation 
to (3.2.3) may be obtained by ignoring the effect of k* and n, and integrating 
over k, and k3 bo yield 

(az~)2 2: 1 ~ : , ( k , )  [I - exp - k;/2rn2,)1 dk,, (3.2.10) 
-03  

where F?,(k,) is the tiransverse spectrum and is defined by 

F ? l ( k Z )  = a @ll(kl> k2, k3) dkl dk3’ (3.2.11) 
--m 
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Equation (3.2.10) is useful in estimating ( A u ) ~  from experimentally determined 
spectra where the conditions for the asymptotic estimate of (3.2.9) may not be 
satisfied or where the Reynolds number may be too low to permit an accurate 
determination from Pao’s spectrum as in (3.2.4). Clearly (3.2.10) reduces to 
(3.2.9) when rn,y % 0.2. 

The dimensionless root-mean-square velocity deviation (a2C)24/( V C ) ~  has been 
plotted as a function of %* in figure 7 .  Values obtained numerically using Pao’s 
spectrum in (3.2.10) and (3.2.4) with p = 0-145 coincided to within 5 yo and 
were plotted together. The asymptotic estimate of (3.2.9) is seen to be accurate 
to within 10% when %* > 0.3; for values less than this it significantly over- 
estimates the turbulent deviations as would be expected from the shape of the 
specbrurn . 

It should be emphasized that ( A u ) ~  includes only fluctuations about the volume- 
averaged velocity uo(t) and does not include the fluctuations of uo(t) in time, which 
must be considered separately as in 4 3.1. 

- 

- 

4. The total Doppler broadening 
4.1. The correZation i ( t )  i(t’) 

The total Doppler current was seen to be given by (2.3.2). We define d as the 
effective displacement due to u,(t), that is, 

- 

t- 

0 
uo(t,) dt, = ;Lit. (4.1.1) 

By taking the probability densities of the turbulent displacements to be 
Gaussian, we may write 

P [ X ( t )  -d(t), X(t’)  - B(t’)] 
1 

- -- exp { - [ ( X ( t )  - g(t)) - (X( t ’ )  - 2(t’))12/24), (4.1.2) 

(4.1.3) 

( 2 4 3  gz 
1 

P[A(a, t ) ,  A(a, t‘)] = - exp(- [A(a, t )  -A(a,t‘)l2/2vi), 
(2n)8 gA 

where 
t t’ 

0 0  
a: = [ X ( t )  - 8(t) - X(t’) + 8 ( t r ) ] 2  = 1 j [u&) - u,(t,)] [u,(t,) - ?io(t2)] dt, dt, 

= - 2u‘2(t-tr)Jt-t’ [ l - q p ( x ) d z  
0 t-t’ 

= - 2(Au)2(t-t’)Jt-‘ [l-*]pO(x)dx 
0 t - t  

- 
N (t - t ’ )2  for small times. (4.1.5) 
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Since the turbulence is assumed homogeneous, incompressible, stationary and 
isotropic, and since the g(a) are statistically independent for different values of 
the argument, we may compute the i ( t )  i(t’) correlation in a straightforward 
manner using (2.3.2), (4.1.2) and (4.1.3). We have 

-- ( 2 - 2 ’ ) 2 ) / ( 1  I 02 +q 
- exp( - (?+ 4a; 2a; 2a2, 

i ( t )  i ( t ‘ )  

i q j  

x exp( -K2az/2 (1 +$++)) cos (K(z -z ‘ ) / ( l  +g+$)). (4.1.6) 

From (2.3.5) we may also write 

i ( t )  i(t’) = F(t )  P(t’) cos KX COSKX’ + G ( t )  G(t’)  sin KX sin KX’ 

+F(t)  G(t‘) cosKX sinKX’ + F(t’) G ( t )  COSKX’ sin KX. (4.1.7) 

Following the same procedure as was used ko derive (4.1.6), it may be shown 
that to order exp { - K2cr2,}, where K2a2, $ 1, that 

and 
In  fact, 

F(t)F(t‘)  N G m  

P(t) G(t’) 2: 0. 

(4.1.8) 

(4.1.9) 

x exp ( - K2a$ (“)I( 2 4  1 + 3 2 4  + G)] cos ( K ( 3 - 2 ’ )  (4) 2 4  /(I +$ 2a; +%)). 2g2, 
(4.1.10) 

cosK(X-X‘) = exp{-+K2a:}cosK(~-if’). (4.1 . l l )  
Furthermore, 

Inspection of (4.1.6)-(4.1.11) reveals that when 

(4.1.12) 

equation (4.1.7) reduces to 

i(t) i(t’) = P(t) P(t’) cos K(X - X’). (4.1.13) 

To justify (4.1.12) we note from (4.1.6) that, when 

K%z N K2U’2(t - t ’ ) 2  1, (4.1.14) 

the correlation i(t) i(t’) N 0. Hence, we need only concern ourselves with times 
of order 

T N I/~*Ku‘. (4.1.15) 
It follows that 

(4. I .  16) 

(4.1.17) 

22 F LM 
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Laminar flow 

Fluctuating centre 
frequency 

Turbulent flow 

FIGURE 8. Spectrum of the Doppler signal current. 

Hence to  order exp { - K2a:), where K202, 9 1, we have 

-- i ( t )  i(t‘) - exp( -- K2a’ 2 + ~ 9 ~ 0 ~ ’ ~ 2 ) e x p { - ~ ~ a ~ ~ } c o s K ( ~ - ~ ‘ )  (4.1.18) 
?(t) 

and (4.1.19) 

It is straightforward to show that the effect of the particle meandering in the 
y and x directions is also smaller than exp { - K2aD where K%2, $ 1. 

I n  summary, we have derived the correlation coefficient for the Doppler 
current i ( t )  i(t’)/i2(t) and for F(t)  P(t’)/F2(t) .  Moreover, since P and G are Gaussian 
and are therefore completely determined by their second-order statistics and 
since X is assumed Gaussian, we have from (4.1.19) that the fluctuations of 
J’ and G are statistically independent of the fluctuations of X ( t ) ,  a fact of major 
importance since the centre frequency fluctuations may be treated separately 
from the ambiguities. 

~- - 

4.2. The spectrum of the Doppler current 

Prom (4.1.13), we have 

i ( t )  i(t + 7 )  P(t) F(t + 7 )  
COSK[X(t) - X ( t + 7 ) ] .  - - 

i“(t) F’”(t) 
- 

Let P ( w )  = F { F ( t )  F(t+7)/F2(t)3 

and & ( W )  = ~ { C O S K [ X ( t ) - X ( t + T ) ] } ,  

(4.2.1) 

(4.2.2) 

(4.2.3) 
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where 9 denotes the Fourier transform. The spectrum of the current is then 

I ( w )  = P{i(t) i( t  + 7)/i2(t)) given by 

or using (4 .2 .1)  
(4.2.4) 

m 

I (0 )  = E(w)*d(w)  = 1 P(w, )  d(w  - w l )  do,, (4 .2 .5)  

where * denotes a convolution and we have used Parseval's relation. It is easy 
- m  

to show that P ( w )  = exp { - w2/2(Aw)'), (4.2.6) 

where (Aw)' = (Aw,)' + (AwL)', (4 .2 .7)  

(AWL)' = U'1.2~2, = (k*- u)  2 1 (4 .2 .8)  

(AwT)' = K2(azC)2, 
and that 

(4.2.9) 

6 ( w )  = exp{ - (w - V0)2/2(A~,0)2)+ exp { - ( w  + Ts0)2/2(Aw,0)2>, (4.2.10) 

where Go = K q  (4.2.1 1) 

and (Aw,J2 = K'G.  (4.2.12) 

Hence the spectrum of the Doppler current is given by 

I ( @ )  = exp { - (w - V,)2/2(Aw2 + Awio)} + exp { - (w + Vo)2/2(Aw2 + AWE,)}. (4 .2 .13)  

Thus the spectrum consists of Gaussian peaks centred a t  &Go and is shown in 
figure 8 for laminar and turbulent flow. 

It is clear thati, when there is no turbulence, the total Doppler bandwidth is 
given by 

In a turbulent flow, however, the turbulence contributes to the Doppler broaden- 
ing in two distinct ways: first, through the broadening due to variations in 
velocity across the scattering volume, Aw,; and, second, through the fluctua- 
tions of the volume-averaged velocity, Awuo. It should be noted that, because of 
the Gaussian model used for both the volume-averaged velocity and the velocity 
variations across the scattesing volume, the latter, (Au)', merely serves to restore 
the attenuated part of 7' to u?. This unfortunately does not appear to be true 
in general and the two types of broadening contribute in distinct and separate 
ways to the tobal broadening. 

Other factors may contribute to an ambiguous broadening of the Doppler 
spectrum such as gradients of mean velocity across the scattering volume, the 
Brownian motion of the scattering particles and a non-monochromatic light 
source (cf. Edwards et al. 1971) .  If these effecks were Gaussian in nature, the total 
Doppler bandwidth could be given by 

(4 .2 .14)  

where Aw,, Aw, and Aw, represent mean velocity gradient, Brownian motion and 
sousee broadening respectively. We shall ignore these effects in the remainder 
of this paper. 

Borrowing a term from RADAR terminology, we shall call Aw, the Doppler 
broadening rising from sources other than the fluctuations of the centre frequency, 
the Doppler ambiguity. 

Aw = Am,. 

- 

(Bandwidth)' = Auto + + Aw$ + A& +-Am; + Aw,", 

22-2 
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4.3. Jleasurement of turbulent intensities from the spectrum 

Since the envelope of the Doppler current spectrum is dependent on the prob- 
ability density of the integral X ( t )  of the velocity field u,(t), we may attempt to 
derive information about the turbulent velocities by examining the spectrum. 
When the probability density of X ( t )  is Gaussian, we have seen that the total 
Doppler broadening is proportional to the root-mean-square turbulence velocity 
(u'2)i. The foregoing analysis must be taken into consideration whenever one 
attempts to measure mean-square fluctuating quantities from the spectrum of 
the Doppler signal. When the fluctuations of w, are of order Aw, the fluctuating 
velocities can no longer be distinguished from the fluctuations due to the Doppler 
ambiguity. The problem is illustrated graphically in figure 8. The limit of resolu- 
tion may be taken as 

Aw/z;io < u' /U.  (4.3.1) 

It should be noted that, because of the broadening Aw, due to turbulent 
velocity variation, the intensity values measured from the spectral broadening 
may not be corrected by simply subtracting the values measured in laminar flow 
as suggesbed by some authors (Pike et al. 1967; Goldstein & Kreid 1967). Failure 
to account properly for the Doppler ambiguity may explain the anomalous results 
of Greated (1969). 

5. The instantaneous signal 

The output from a typical FM detector was given by (2.3.9) as 

5.1. The spectrum of w1 

w1 = Ku,(t) - 6. 
Assuming that Taylor's hypothesis is valid in the flow under consideration, we 
may wribe 

where Po is the spectrum of u, and N is the spectrum of the phase fluctuations. 
Substituting into (2.3.8), we have 

m 

o1 = ~1 eiatdZ(a)-Sm e*"tdN,(a). (5.1.3) 

Since the phase fluctuations and Ku, are uncorrelatied, the spectrum of w1 is 
given by 

K 2  F,(a/Z)/;il + N (  a) .  

The problem of measuring turbulent spectra has thus been reduced t o  'what 
is N ( a )  ? ' 

- w  - m  
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5.2. The nature of the phase juctuations 

Since F and G are identically distributed Gaussian random variables, we may 
take F and G to be the co-ordinates of a point in the x, y plane, which moves in 
such a way that it has a circularly symmetric Gaussian distribution. 4 is the angle 
subtended by the radius vector to the point and the x axis. 

It is evident that 4 is not stabionary. If 4 begins from zero, say, then for times 
short compared with 2nIAw the probability of finding [ 4 I > 27l will be small; 
as time passes it becomes more and more likely that 4 will have made one or 
more revolutions about the origin. If d( t )  is stationary, 

(5.2.1) 

As we let t -+ m, 4(t) $ ( O )  -+ 0 and 

0 =/ --m 4( t )4( t+7)d7 ,  t’-t = 7, 

(5.2.3) 

since the correlation is symmetric. Hence, the value of the spectrum at the 
origin is given by 

(5.2.4) 

This clearly will be non-zero since 4 is non-stationary. 
The joint characteristic functional of F and G is determined entirely by one 

parameter Aw; consequently, that of 6 will also be determined only by Aw. Hence, 
we must have on dimensional grounds 

d p / d t  cc Aw (5.2.5) 

with an unknown coefficient, hopefully of order unity. 

5.3. An exact expression for the correlation d ( t )  d ( t  + T)? 
It was shown in (2.3.5) that the Doppler current under appropriate restrictions 
could be represented by 

i ( t )  = F ( t )  cos KX + G(t) sin K X ,  

t Earlier presentations of this work (cf. Lumley et al. 1969; George 1971) appear to be 
based on 8 faulty assumption regarding the correlation of the radial and angular com- 
ponents of the signal. The authors are grateful to Professor N. Berman for calling the work 
of Rice and others t o  their attention. 
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where X = X ( t )  and P and G are Gaussian random variables. Alternatively 

W .  K.  George and J .  L. Lumley 

i ( t )  = (a2 + G2)* cos ( K X  - 4)) 
where tan$(t) = GIP. 

Differentiating we have 
. dq5 F G - G p  

dt F2+G2 ' 
$(t)  = - = (5.3.1) 

The correlation &t) d(t  +7) is then given by 

(5.3.2) 

where the indices 1 and 2 refer to the two time points t and t+7 and where 
ensemble averages have to be performed using the joint probability density of 
6he eight variables F,, G,, P,, g,, P2, G,, 3, and 8,. This probability density is 
an eight-dimensional Gaussian distribution and the problem is identical to that 
of filtered noise detection in an FM receiver (cf. Lawson & Uhlenbeck 1950; 
Rice 1948; Middleton 1950). The correlation of the random phase fluctuations 
may be shown to be given by (Lawson & Uhlenbeck 1950, p. 373) 

(5.3.3) 

where p(7) = F ( t )  F ( t  +~)/-r"' = G(t)  G ( t + ~ ) / s .  (5.3.4) 

Of particular interest is the fact that RN(7) becomes logarithmically infinite as 
7 + 0. This may be explained physically by noting that, since the displacement 
in one direction and velocity in the orthogonal direction (of the point moving on 
the plane) are independent, arbitrarily large values of the angular velocity d 
can occur, corresponding to a finite linear velocity and arbitrarily small (ortho- 
gonal) displacement. As a consequence of this behaviour, any attempt to measure 
turbulent energy 2 by averaging the squared output signal is rendered futile 
since - - 

(02, = K G + p  (5.3.5) - 
and &2 = 00. 

We have already shown that P and G have Gaussian correlation functions 

p(7) = exp { - 4(A0)~7~}. (5.3.6) 

The corresponding RN(7) is then given by 

RN(7) = - 4(Aw)210g (I  - ~ 2 )  (5.3.7) 

and is shown in figure 9. Recall that this will be added to the correlation of the 
turbulence and will render the measurement of microscales difficult at best, if 
not impossible. 
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0 1 

Aw7 

FIGURE 9. Autocorrelation RJ7) of the phase fluctuations. 

~ ~ ( 7 )  2 &t)  &+7j = - (;d --- ") log ( 1 - p 2 ) ,  p(7) = exp [-fr(Au7)2]. 
2 P  P 

5.4. The spectrum of the random phase fluctuations 

Substitution of (5.3.6) into (5.3.3), expansion of the logarithms in powers of p2 
and Fourier transformation term by term gives the following form for the 
spectrum? (cf. Rice 1948): 

(5.4.1) 

As long as a < Ao, the effect of the exponential is small and 

N(a)  E N ( 0 )  (a  < Am). (5.4.2) 

We may approximate (5.4.1) by a finite sum and a remainder as 

where the last term was obtained by writing the remainder as an integral from 
M to  00. By choosing M = c ~ ~ / 4 ( A w ) ~  and letting a -+ 00, we have 

N(a)  2: (Aw)2/2a (a 9 Aw). (5.4.4) 

This result is also obvious from the logarithmic singularity of the correlation at  
the origin. 

t Spectra are defined on the whole line ( - co, co). 
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0 1 2 3 4 5 6  

u/Aw 

FIGURE 10. Spectrum of the phase fluctuations, adapted from Rice (1948) 
(normalized on whole line). 

The spectrum was calculated from (5.4.3) by Rice (1948) for M = 12 and his 
spectrum is shown in figure 10. 

Usually a N Aw represents a frequency well above the highest turbulence 
frequency of interest and the spectrum is experimentally white. Therefore, to 
simplify the analysis in the remainder of this paper, we shall approximate the 
specbrum of the random phase fluctuation by its value at the origin, that is 

N ( 0 )  = 0 . 3 6 8 A ~  (a < Aw). (5.4.5) 

5.5. The limit of spectral measurement 

The limit of measurement of Fll(a) will be determined by the frequency a, where 
the ratio of the turbulence spectrum to the ambiguity spectrum is unity, or where 

(K2/Z) Fil(ao/Z) = N(cr,). (5.5.1) 

Non-dimensionalizing by Kolmogorov variables e and Y we have, using (4.2.7) 
for Aw and the asymptotic estimabe for Am, given in equation (3.2.9), 

(5.5.2) 

where E ,  = aoT/u. (5.5.3) 

The first term represents the effect of the transit time broadening and the second 
term represents the effect of the turbulence broadening. The parameter R is 
defined by 

27TZ 27TE2 uh 
(5.5.4) R = _ _  = _ _  = _____ 

v K v Go 2vsin&?' 
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- 3  I I - 
-1 0 + I  

log &, /4*0 

FIGURE 11. Combined transit time and turbulence broadening. Pil(Tio) 
defined by ( 5 . 5 . 2 ) ;  R = 1.0, sin +6 = 0.1, k*,,, = 44. 

\ Pao’s (1965) one-dimensional 
spectrum renormalized to 

I I 

-1 0 

FIGURE 12. Optimum ambiguity spectra. k*v = 1.27(R sin go)-*, 
R = Z A ~ ~ V  sin 40, R, = RIsin* +o. 
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3 - 1  
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- 1  
-3 -2 -1 

log Lo 
FIGURE 13. Wavenumber corresponding to  an ambi,pity-to-turbulence ratio of unity under 
optimum conditions. P:,(k,) = 1.68 x 1W2R?, R = Zh/2v sin +O = 27rZ2/vZ,, R, = R/sin*+O. 

Physically, R is just a Reynolds number based on the smallest length that can 
be resolved in the mean flow direction; if the ‘crests’ of the light waves (wave- 
length A )  make an angle #’ with the direction of mean flow, then &A sin 40 is the 
smallest length that can be resolved in that direction. 

The lowest ambiguity spectral level (highest cut-off frequency a,) is obtained 
when the contributions of the turbulence and the transit time are equal; from 
(5 .5 .2)  the optimum cub-off wavenumber is then 

E*o,t - - 1 m ( R  sin &9-*. (5 .5 .5)  

Thus the lowest ambiguiby spectral height for fixed R and 8 is given by 

&(ko) = 1.68 x 10-2R~/(sin&9)B. (5.5.6) 

This equation implicitly determines the largest ha (the wavenumber for which 
the ratio of the turbulence to ambiguity spectrum is unity) that can be obtained 
for fixed li and 8. 

The ambiguity spectral levels froni (5 .5 .2)  are shown in figure 11; the combined 
effects of the finite transit time and turbulence broadening are demonstrated 
as a fuiiction of 

The optimum spectra from (5.5.6) are shown in figure 12 for several values of 
R, = R/sin* +8. Pao’s spectrum for the turbulence has also been plotted; E ,  is 
determined by the intersection of the turbulence and ambiguity spectra. 

for R = 1.0 and sin &0 = 0.1. 
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Finally, figure 13 shows Lo as a function of R,. i0 is determined implicitly by 
(5.5.6) and Pao's spectrum has been used for p!l(ko). 

From figure 13 it can be seen that, for Lo = 1, Rlsini 48 = 0.10. With typical 
values of h = 6.3 x cm2/s (corresponding to measurements in 
water) and 2 sin it? = 0.2 we have S 2 1.5 cmls. Relaxation of the resolution 
requirements to Lo = 0.1 increases the permissible mean velocity U by about two 
orders of magnitude. It should be remembered, however, that the Lo determined 
from (5.5.6) is actually quite conservative since a turbulence/ambiguity ratio of 
unity does not permit accurate determination of the spectrum. 

From figure 12 it can be seen thab, for Lo - 1, the spectrum begins t o  deviate 
perceptibly at about Lo N 0.5. A certain amounb of subtraction of the ambiguity 
can be done since it is uncorrelated with the turbulence. 

The situation might be improved somewhat by increasing the mean Doppler 
frequency Go which corresponds to increasing the scattering angle 8. Unfor- 
tunately, forward scattering is much more efficient and it is difficult in practice 
to achieve a suitable Doppler signal when 2 sin +9 is much above 0.7. Additional 
problems may arise from the electronics as higher frequencies are used. 

cm, v = 

5.6. Intensity measurements and higher order statistics 

We have seen that the mean-square value of 6 is infinite. This value in practice 
is finite because of the low-pass filtering introduced by the detection process; 
however, considerable contamination of intensity measurements from the in- 
stantaneous signal may result because of the wide-band nature of 9. Clearly 
ambiguity contributions will be present and perhaps even dominant in attempts 
to measure higher order statistics such as skewness and kurtosis. 

5.7. Two-point velocity correlations 

Two-point velocity correlations may be performed using two independent laser- 
Doppler velocimeters. From (2.3.3) and the fact that F and G are Gaussian it 
may be shown that the correlation between the phase fluctuations induced by 
the Doppler ambiguity from the two velocimeters is no greater than 

where (r l ,  r2, r3) measure the distance between the scattering-volume centres in 
Che (x, y ,  x )  directions respectively. When any one of rl, r2,  r3 % g,, v2, c3 the phase 
fluctuations are effectively uncorrelated and 

where (1) and ( 2 )  denote the signals from the two velocimeters. This is consistent 
with the observatioils of Clark (1970), who successfully measured velocity 
correlations in turbulent pipe flow by using two velocimeters. 
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It has been suggested (Morton 1970, private communication) that the phase 
fluctuations from two velocimeters looking a t  the same scattering volume might 
be uncorrelated if the velocimeters were placed ab different angles to  the flow 
(i.e. rotated about the axis defined by the mean flow direction) because the phases 
for individual particles would be different. An examination of ( 2 . 2 . 2 )  reveals 
that the phase of a scattering particle depends only on its initial x co-ordinate, 
which is the same for each velocimeter. Thus, while the correlation may not be 
unity because of the possibly differenb amplitudes associated with each particle, 
it will be significant if the scattering volumes overlap. 

6. Summary and conclusions 
6.1. Review of results 

The limitations on the use of a laser-Doppler velocimeter in the measurement of 
turbulence have been explored theoretically. The relationship between the size 
of the scattering volume and the resolution of the velocimeter was explored and 
criteria for accurate measurement were established; briefly, it was found that the 
turbulent fluctuations of wavenumber larger than the cut-off wavenumber 
associated with the largest dimension of the scattering volume were seriously 
attenuated. 

The influence of the Doppler ambiguity on the measurement of spectra and 
other statistical quantities was examined. The Doppler ambiguity was seen to 
arise primarily from the finite transit time of particles through the scattering 
volume and velocity fluctuations within the volume. I n  addition, the effects 
of a mean velocity gradient, Brownian motion, source non-monochromaticity 
and electronic noise may be important. The spectrum of the phase fluctuations 
was seen to be experimentally white and proportional in height to the band- 
width of the Doppler ambiguity. Criteria for minimizing the height of the 
ambiguity spectrum were established and an optimum scattering-volume cut-off 
wavenumber for minimization was given as 

(6.1.1) 

where R = 27ri721vzj0 and where k ,  is the dimensionless cut-off wavenumber 
associated with the dimension of the scattering volume in the direction of the 
mean flow. 

6.2. The measurement of spectra 

We must discuss the relationship between the resolution criteria and the criteria 
for minimizing the Doppler ambiguity. 

For small scattering angles, the wavenumber m, associated with the largest 
dimension of the scattering volume is related to Ic ,  by 

m, g k ,  sin frS/cos $9. 
We then have 

m*opt = kL0Pt sin $0 1.27 ry]', 
(6.2.1) 

(6.2.2) 
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FIGURE 14. Plot of combined ambiguity and spatial resolution out-off 
wavenumbers. fi*opL = 1.27[sin (@)/El*, sin = 0.145. 

We saw ing3.1 that fi%* determines the half-power point of the spectral transfer 
function, thab is, the wavenumber at which the measured spectrum is attenuated 
by 50%. Clearly determines the half-power point when the scattering 
volume is chosen for minimum Doppler ambiguity. Figure 14 shows a combined 
plot of, first, the wavenumber at  which the turbulence-to-ambiguity ratio is 
unity and, second, the wavenumber of half-power attenuation to which the 
spectrum may be corrected by subtracting the ambiguity (sin i 0  has been chosen 
as 0.145). By choosing values of&, greater than the half-power attenuation 
may be moved to as high a wavenumber as we please; however, the Doppler 
ambiguity will be sharply increased as will the error involved in obtaining the 
corrected spectral values. 

To summarize the above comments into a practical plan for research: in all 
but the most unusual circumstances, the size of the scattering volume should 
be determined by (6.2.2) for minimum ambiguity; the spectral values obtained 
should then be corrected by subtracting the Doppler ambiguity; and finally, 
the corrected values should be multiplied by the inverse transfer function 
Fll(k)/Fo(kl) to determine the true spectrum. 
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FIGURE 15. Technique for eliminating ambiguity by cross-correlation. 

6.3. Possible alternatives fo r  spectral measurement 

It has been suggested by some investigators that the Doppler ambiguity might 
be eliminated by using a frequency-tracking device. A frequency tracker basically 
averages the product ofthe signal and the frequency of a local oscillator, adjusting 
bhe local oscillator frequency to minimize the mean product. It is thus seen to 
be equivalent to a filter, operating on the input slewing rate, the filter charac- 
teristic being determined by the loop gain and the averaging characteristic. If 
the slewing rate 4 of the phase fluctuations due to the Doppler ambiguity were 
significantly different from the slewing rate wo of the turbulence, the averaging 
time of the frequency tracker might be adjusted to average out the ambiguity 
fluctuations. Unfortunately, this attractive possibility does not correspond to 
reality; an examination of the spectra reveals that the slewing rates of the 
ambiguity and turbulence are quite similar and thus indistinguishable on the 
basis of second-order statistics. Clearly the frequency tracker can remove the 
Doppler ambiguity only by also removing some of the turbulence. 

It was pointed out in 3 5.7 that two-point correlations may be performed by 
using two velocimeters since the Doppler ambiguity is uncorrelated if the 
scattering volumes do not overlap. If sufficient accuracy in determining the 
spectrum is not obtainable using the subtraction procedure suggested above, 
we may use two velocimeters whose scattering volumes are very close to each 
other - say within the turbulence microscale- although not overlapping; figure 15 
shows a possible configuration. After performing time correlations between the 
two outputs, we may obtain the spectrum by Fourier transforming the corre- 
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Velocity 
Application Radiation h (m/s) VD R L o  

Wakes in air Light 0.6pm 300 150MHzt 40 0.1 
Clear-air turbulence Radar Icm I$ 100Hzs 600 0.01 
Oceanic turbulence Sonar 0.01cm 1$ 2OkHzs 50 0. I 

Grid turbulence in water Light 0.6 p m  1 500 kHzt  2 0.5 
Grid hrbulenee in air Light 0.6 p m  1 500 kHzt 0.3 0-8 

t sin &O N 0.1, $ No mean velocity; u' N 1 m/s. 0 Backscattering; sin &el2 N 1. 

TABLE I 

lation. Since the Doppler ambiguities of the two velocimeters are uncorrelated 
and since the velocimeters are essentially sampling the same velocity fluctuation, 
the measured correlation is simply the correlation of the turbulence alone as is 
the resulting spectrum. Clearly, the spectrum can only be resolved to scales 
corresponding to the separation between the scattering volumes. This method of 
measuring spectra suffers from several obvious disadvantages: it requires two 
veIocimeters instead of one, it requires very careful alignment to avoid over- 
lapping and crosstalk, and considerable added effort is necessary to correlate 
and transform the outputs. 

6.4. Conclusions 

The influence of the Doppler ambiguity, together with the problems of resolution, 
have been shown to provide major limitations on the use of the laser-Doppler 
velocimeter in the measurement of turbulence. 

It should be noted that these limitations apply to all Doppler velocimeters 
regardless of the incident radiation. Table 1 shows an estimate of the dimension- 
less wavenumber at which the turbulence-to-ambiguity ratio is unity for a 
number of different applications. These estimates show that the possibility of 
measuring dissipation spectra in high-speed or in geophysical flows using Doppler 
velocimeters is quite remote. 

Part 2. Experimental verification 

7. The apparatus 7.1. The optical system 

The optical system used in these experiments is of the type proposed by Goldstein 
and is shown in figure 16. The system was chosen for its simplicity and for the 
ease with which it could be aligned. 

The source of radiation was a nominal 50mW neon-helium laser (Spectra- 
Physics Model 125); the actual output was closer to 90mW. The beam was 
vertically polarized and of Gaussian cross-section. The distance between the 
l /e2 points of intensity was about 2 mm and the divergence angle was less than 
0.7 mrad. 
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.1 M2 

100 mW 
He-Ne laser n 6328A 

FIGURE 16. Optical arrangement. L1, L2, lenses; PR1, PR2, polarization rotators; M i ,  
M2, M3, front surface mirrors; BS1, polarizing beam splitter. oo = 277(2u/h) sin 40. 

The beam was split into the reference and scattered beams by means of a 
polarized beam splitter which passed only horizontally polarized light. By 
rokating the plane of polarization of the incoming light with a polarization 
rotator (Spectra-Physics Model 310), the relative intensity of bhe two beams 
could be adjusted for the optimum signal strength. A second polarization 
rotator served to return the horizontally polarized beam to being vertically 
polarized since the scattering intensity is maximized when the polarization of 
the light is perpendicular to the plane of scattering (which in our case was 
horizontal). 

The two beams were focused to the desired region in the flow with spherical 
lenses obtained from Ealing Optical. Since thef-number based on beam diametier 
in our experiments ranged from 50 to 1000, aberrations were negligible and the 
lenses were diffraction-limited to a high approximation. Precise alignment was 
afforded by micrometer mirror mounts (Oriel Model 145) in the reference and 
scattered beams. 

The entire optical system rested on a 7001b concrete table supported by four 
viscoelastic sandwichpads. Thisarrangement served to minimizevibrations to the 
point where no realignment of the optics was necessary over run periods up to 3 h. 

The test section was circular in cross-section and constructed of Plexiglas 
tubing. To minimize the lens effect of the test section, an optically flat box was 
placed around the test section and filled with water so as to provide an approxi- 
mately constant index of refraction. No additional optical filters or apertures 
were present between the flow and the photodiode. 

7.2. The scattering agent 

Because of the large quantity of scattering particles necessary for a 1000-gallon 
facility, an inexpensive supply was necessary. Homogenized milk in concentra- 
tions of about 1: 2000 was found to provide an excellent signal-to-noise ratio. 
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FIGURE 17. Signal processor. 

From Clayton, the average fat particle size is approximately 0.3,um with about 
1014 particles per litre of milk; hence, the particle concentration was approxi- 
mately 5 x lo7 particles per C.C. 

7.3. The optical receiver 

The heart of the receiver package was an EG & G Model SDG-040A photodiode 
(surface area N 0.1 cm2). This was chosen because of its high quantum efficiency 
( N 50 yo) and low cost ( N  $15.00). The photodiode was biased at  9OV with 
standard mercury cells. The noise was primarily due to the input noise from the 
first amplifier stage; this represented a distinct improvement over previous 
attempts to use a photomultiplier tube where, because of the much lower 
quantum efficiency, the noise was predominantly photon shot noise from the 
reference beam. With use of the latest avalanche and combination diodes, the 
noise in our set-up could probably have been reduced t o  the shot noise limit, but 
this was not deemed necessary. 

The photodiode was followed by a single broad-band amplifier having a gain 
of 12, a tunable band-pass filter (250-700 kHz) with a bandwidth of about 10 %) 
and an infinite clipper (gain N 140 db) which effectively removed all the ampli- 
tude information. Signal-to-noise ratios measured after the filter by blocking the 
scattering beam typically ranged from 10 to 50. 

23 F LM 
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FIGURE 18. Flow facility. 

7.4. Prequency-to-voltage convertor 

The frequency-to-voltage convertor, together wiCh the optical receiver package, 
is shown in figure 17. The frequency-to-voltage convertlor was constructed from 
standard Honeywell 5 mc microcircuits (p-PACS) along with a - GO db/octave 
Butterworth low-pass filter (Wyngaard & Lumley 1967). The response was linear 
to inputs between 8 kHz and 1 MHz t o  within 3 %. 

7.5. TheJlow facility 

The facility used in these experiments is shown diagrammatically in figure 18. 
It is essentially a closed-circuit water tunnel with a 1.7 in. I.D. circular test 
section. The flow passes from a 1000-gallon reservoir into a long settling chamber 
12 in. in diameter by 30 in. Prom the settling chamber the flow enters the test 
section through a 36: 1 contraction. The flow is pulled through the best section by 
a pump which permits flow rates up to 10 m/s; the flow rate is controlled by varying 
the pump speed or by adjusting the valve in the return system. The mean flow 
rate shows negligible drift over periods up to an hour and the root-mean-square 
velocity fluctuation with no grid is less than 0.2 yo of the mean flow rate. 

For the turbulence experiments agrid was inserted a t  the end of the contraction. 
The grid was of biplane design and was constructed of no. 19 hypodermic tubing. 
The bar spacing was 0.1 in.; this corresponded to a solidity of 0-32, which was 
close to that used by other investigabors of homogeneous turbulent flows (cf. 
Comte-Bellot & Corrsin 19G6). 

Mean flow velocities were measured with a Potter flow meter (Model 1-5550) 
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which was installed after the test section. The meter produced a signal whose 
frequency was proportional to the mean flow rate. The frequency of bhe flow 
meter output was monitored with a counter and flow rates were read from the 
calibration curve, which was linear over the range of velocities used. 

7.6. The measurement of spectra and correlations 
Spectra were measured by feeding the amplitude-modulated signal from the 
detector of the laser-Doppler velocimeter into a HewlettiPackard Model (302A) 
Wave Analyser (equivalent noise bandwidth 6 c/s). The internal 100kHz carrier 
from the wave analyser was squared by a Ballantine true r.m.s. voltmeter (Model 
320A) and integrated for 60s by an analog integrator yielding a d.c. output 
proportional to the spectral heighb. The system was calibrated independently 
with a low-passed white noise signal. 

Analysis of the data reveals a consistent decrepancy between experiment and 
theory which can be traced only to an incorrect calibration. Unforiiunately, this 
apparent error was discovered too late to be rectified and the data are presented 
as originally taken. 

Correlations were performed with a PAR correlator having a time constant 
of 10 s. 

8. The measurements 
8.1. Background 

Spectral measurements were taken in both laminar and turbulent flow in water 
in an attempt bo identify the separate effects of finite particle transit times and 
the turbulent fluctuations across the beam. In all cases the effect of the noise was 
less than 1 yo. 

The flow velocities varied from 70 t o  100 cm/s and the Doppler beat frequencies 
from 250 to 650 kHz. This corresponded to values of R from about 1 to 3. 

8.2. Laminarjlow 

Figure 19 shows measured spectra in laminar flow. The measurements were 
non-dimensionalized by the Doppler bandwidth calculated from the flow velocity 
and lens focal length. The dependence of the height of the ambiguity spectrum 
on the transit time Am = ( i /k*n)  is clearly shown in figure 20, in which the 
spectral height is plotbed as a function of E,. In  both cases, the data are about 
65 yo high. Analysis of the turbulent data presented below reveals that this error 
must be in calibration.? 

8.3. Turbulentjlow 

The measurements in turbulent flow were taken 45 mesh lengths behind the grid, 
where the turbulence is approximately isotropic. Spectra were non-dimen- 
sionalized by v and the rate of dissipation c determined from the measured 

f It has here been assumed that Rice’s prediction of the spectral height is correct and 
his theory applicable. This assumption is supported by the observations of other in- 
vestigators (Berman & Dunning 1973). 

23-2 
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FIGURJ~ 19. Measured ambiguity spectra in laminar flow. Aw = k*E,  E = 80 cm/s. 
A, k,  = 282 crn-l; 0, k,  = 352 em-l; 
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FIGURE 20. Dependence of spectral height N(0)  on Aw = iik* (k ,  calculated from lens focal 

length). -, N(0)  = 0.368Aw. Uniform laminar flow; 3 = 80 cm/s. 
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-2  -1 0 

1% L, 
FIGURE 21. Measured (crosses) and corrected (circles) spectra in turbulent flow shown with 
spectrum measured with hot-film anemometer. Ril.l = 2 x lo3, z / M  = 45, k, = 3.9, 
sin 3e = 0.145. 

decrease in turbulent intensity with distance from the grid. The intensity measure- 
ments were taken with a hot-film anemometer because of the high ambiguity- 
to-turbulence ratio in such a low intensity flow. 

A typical turbulence specbmm is shown in figure 21. The measured spectral 
values are seen to approach a constant value and then to drop slowly; the slow 
drop-off seems to begin at  about the wavenumber corresponding to a N A o  as 
predicted. The constant value was subtracted from the measured spectral values; 
the result is seen to be within experimental error of that measured with a constant 
temperature hot-wire anemometer and a conical hot-film probe. 

Corrected spectral measurements for six different values of k ,  are shown in 
figure 22. The smallest value of 1, used (0.55) corresponds to a value of !Fi* = 0.08. 
Clearly, as expected from the analysis of $3.1, this set of measurements shows 
considerable attenuation ( N 50 %) at all wavenumbers. Because of the low 
Reynolds number (deviation from Pao’s spectrum at low wavenumbers) and 
the large error at high wavenumbers, it was not possible to perform an accurate 
check on the transfer function given in $ 3.1. 

Figure 23 shows the measured ambiguity spectral height (determined from the 
asymptotic values of the turbulent spectra) as a function of k,/k,,pt, where Lgopt 
is computed from (5.10.5). The asymptotic theory is not applicable here because 
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FIGURE 22. Corrected spectra shown with spectrum measured with hot-film anemometer. 
RM = uM/v  = 2 x lo3, sin @I = 0,145. 

v 0 0 X A 
k* 0.55 1.1 2.2 3.9 5.5 7.4 

of the relatively small values off&. Likewise, khe turbulent bandwidth computed 
from Pao’s spectrum is too high since it is clear from the measured spectra that 
the velocity fluctuations at  low wavenumbers are overestimated. The transverse 
spectrum F&(k,) was computed from the longitudinal spectrum P:,(k,) obtained 
from the laser-Doppler velocimeter measurements and this was used in (3.2.10) 
to compute the turbulent bandwidth Aw,. As before, the measured values are 
above the theoretical curve. If this error were other than from calibration, the 
minimum would occur in Che wrong place. 

Figure 24 shows time autocorrelations at  two distances from the grid (no 
attempt was made to calibrate the vertical axis). The effect of the ambiguity is 
dramatically illustrated in spite of the 5 kHz low-pass filter in the detector. 

8.4. Conclusions 

The measurements taken in both laminar and turbulent flow show the trends 
predicted by theory. Since there are no adjustable constants in either theory or 
experiment in the prediction of the results of figure 23, these results must be 
regarded as conclusive and the theory substantially correct. 
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FIGURE 23. Typical turbulence autocorrelations illustrating the effect of 
the low-passed Doppler ambiguity. 
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FIGURE 24. Turbulence autocorrelations at  two distances from the grid. 
RM = U0M/V = 2500. - - -  , z /M = 40; ~ , XllM = 70. 



360 W .  K .  George and J .  L. Lumley 

The authors would like to thank Professor H.Tennekes and Professor N. 
Berman for many stimulating discussions of this material. We are also grateful 
to R. Pierce and E. Jordan, who assisted in the design and construction of the 
electronics, to T. Gatski and R. Carlson, who assisted with the measurements, to 
K. Jones, who assisted with the computer programming, and t o  P. Stover for 
typing the manuscript. 

Earlier versions of portions of this material have appeared in Lumley et al. 
(1969) and George & Lumley (1970,1971), as well as in the first author’s doctoral 
dissertation presented t o  the Department of Mechanics of the Johns Hopkins 
University. 

This research was supported in part by the Office of Naval Research under 
Contracts Nonr656(33) and N00014-67-A-0385-OOl3 with the Pennsylvania 
State University and in part by the Applied Research Laboratory of the 
Pennsylvania State University under contract with the Naval Ordnance Systems 
Command. 

Appendix 
g(x) has been defined as a random weighting function which accounts for the 

presence or absence of the scattering particles, as well as their size. For con- 
venience, we define 

g(x) = g,(x) A (4, (A 1) 

where g,(x) accounts for the presence or absence of the scattering particles and 
A (x) accounts separately for the particle size -in this context its scattering 
coefficient G,. For dilute solutions, g,(x) and A(x)  are statistically independent. 

If Ni is the instantaneous number of particles in the scattering volume V ,  
we have 

(A 2) 
V 

and 
- - - 
4 =_ N, = [ g,(x)dx = gl(x). V 

J V  

since g,(x) is homogeneous. Therefore 

where p is the expected number of particles per unit volume. 
The scattering particles are usually distributed as Poisson random variables; 

hence, if P(N,) is the probability of having Ni particles in the volume, we have 
(Rice 1954) 

We also have 

@ = 11 g,(x) g,(x’) dx dx’. (A 6) 
V 
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Using generalized functions (Lumley 1970) 
P C  

has the solution Q = p2 and 

//vQ(x,X’)dxdx’ = p v  

has the solution Q = pS(x - x‘). Hence, 

g,(x)g,(x’) = 1U2+lUW--’). (A 9) 
For a monodisperse particle distribution normalized to unit size, g(x) = g,(x). 

Since g,(x) and A(x)  are statistically independent, the extension of the above 
results to arbitrary particle distributions is straightforward. 
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